多层光学薄膜模拟
使用传输矩阵法计算多层结构的透射和反射系数。此应用显示不同波长和入射角的结果。版权所有 © 2025,黄罗成。
基本使用指南
要模拟多层结构:
设置波长范围和光谱点数。
在半无限介质(空气)之间添加层:
*点击"添加层"添加中间层;
*对于每一层,设置折射率(n)、消光系数(k)和厚度(单位:nm)。
查看结果:
*六个图表显示TE和TM偏振的光学响应;
*使用角度滑块改变入射角;
*热图显示波长-角度依赖性;
关键术语:
*TE:电场垂直于入射面;
*TM:磁场垂直于入射面;
*R:反射光比例;
*T:透射光比例;
如何使用配对层功能
要创建周期性结构(例如,DBR):
添加要重复的层
勾选这些层的"添加到配对"
启用"启用配对"
设置重复次数
技术细节
这里,我们使用传输矩阵法(TMM)来分析电磁波在多层结构中的传播。以下描述了实现细节。
每层中的波传播
- 在每一层中,电场可以表示为前向和后向传播波的叠加: \(E(z) = A e^{ikz} + B e^{-ikz}\)
- 其中 \(k = \frac{2\pi n}{\lambda}\) 是波矢量,\(n\) 是复折射率,\(\lambda\) 是波长。
边界条件
- 在层之间的每个界面处,电场和磁场的切向分量必须连续。
- 对于TE偏振(s偏振),电场垂直于入射面。
- 对于TM偏振(p偏振),磁场垂直于入射面。
传输矩阵形式
- 相邻层中场之间的关系可以用传输矩阵描述: \(\begin{pmatrix} A_{j+1} \\ B_{j+1} \end{pmatrix} = M_j \begin{pmatrix} A_j \\ B_j \end{pmatrix}\)
- 其中 \(M_j\) 是第j层的传输矩阵,它考虑了层内的传播和界面处的反射/透射。
矩阵分量
- 对于厚度为 \(d\)、折射率为 \(n\) 的层,传输矩阵为: \(M_j = \begin{pmatrix} e^{ik_jd_j} & 0 \\ 0 & e^{-ik_jd_j} \end{pmatrix} \begin{pmatrix} 1 & r_j \\ r_j & 1 \end{pmatrix}\)
- 其中 \(r_j\) 是界面处的菲涅尔反射系数。
菲涅尔系数
- 对于TE偏振: \(r_{TE} = \frac{n_1\cos\theta_1 - n_2\cos\theta_2}{n_1\cos\theta_1 + n_2\cos\theta_2}\)
- 对于TM偏振: \(r_{TM} = \frac{n_2\cos\theta_1 - n_1\cos\theta_2}{n_2\cos\theta_1 + n_1\cos\theta_2}\)
- 其中 \(\theta_1\) 和 \(\theta_2\) 是入射角和折射角,由斯涅尔定律关联:\(n_1\sin\theta_1 = n_2\sin\theta_2\)。
总传输矩阵
- 多层结构的总传输矩阵是各层矩阵的乘积: \(M_{total} = M_N \cdot M_{N-1} \cdots M_1\)
反射和透射系数
- 总反射和透射系数可以从总传输矩阵中提取: \(R = \left|\frac{B_0}{A_0}\right|^2, \quad T = \left|\frac{A_N}{A_0}\right|^2\)
- 其中 \(A_0\) 和 \(B_0\) 是第一层中的入射和反射场幅度,\(A_N\) 是最后一层中的透射场幅度。